Factor analysis model evaluation through likelihood cross-validation
نویسندگان
چکیده
منابع مشابه
Bi-Cross-Validation for Factor Analysis
Factor analysis is over a century old, but it is still problematic to choose the number of factors for a given data set. We provide a systematic review of current methods and then introduce a method based on bi-crossvalidation, using randomly held-out submatrices of the data to choose the optimal number of factors. We find it performs better than many existing methods especially when both the n...
متن کاملteacher educator evaluation model
اگرکیفیت معلم کلاس برای بهبودیادگیری دانش آموزحیاتی است،پس کیفیت اساتیددانشجو-معلمان، یابه عبارتی معلمین معلمان نیزبرای پیشرفت آموزش بسیارمهم واساسی است.ناگفته پیداست که یک سیستم مناسب آموزش معلمان ،معلمین با کیفیتی را تربیت خواهدکرد.که این کار منجربه داشتن مدارس خوب، ودرنتیجه نیروی کارماهرتروشهروندبهتربرای جامعه خواهدشد. اساتیددانشجو-معلمان نقشی بسیارمهم را در سیستم اموزش معلمان درسراسرجهان ای...
Selecting Likelihood Weights by Cross - Validation
The (relevance) weighted likelihood was introduced to formally embrace a variety of statistical procedures that trade bias for precision. Unlike its classical counterpart, the weighted likelihood combines all relevant information while inheriting many of its desirable features including good asymptotic properties. However, in order to be effective, the weights involved in its construction need ...
متن کاملAsymptotic optimality of likelihood-based cross-validation.
Likelihood-based cross-validation is a statistical tool for selecting a density estimate based on n i.i.d. observations from the true density among a collection of candidate density estimators. General examples are the selection of a model indexing a maximum likelihood estimator, and the selection of a bandwidth indexing a nonparametric (e.g. kernel) density estimator. In this article, we estab...
متن کاملLikelihood Cross-Validation Versus Least Squares Cross- Validation for Choosing the Smoothing Parameter in Kernel Home-Range Analysis
Fixed kernel density analysis with least squares cross-validation (LSCVh) choice of the smoothing parameter is currently recommended for home-range estimation. However, LSCVh has several drawbacks, including high variability, a tendency to undersmooth data, and multiple local minima in the LSCVh function. An alternative to LSCVh is likelihood cross-validation (CVh). We used computer simulations...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistical Methods in Medical Research
سال: 2007
ISSN: 0962-2802,1477-0334
DOI: 10.1177/0962280206070649